Закон больцмана для распределения частиц во внешнем потенциальном поле

Пусть идеальный газ находится в поле консервативных сил в условиях теплового равновесия. При этом концентрация газа будет различной в точках с различной потенциальной энергией, что необходимо для соблюдения условий механического равновесия. Так, число молекул в единичном объеме n убывает с удалением от поверхности Земли, и давление, в силу соотношения P = nkT, падает.

Если известно число молекул в единичном объеме, то известно и давление, и наоборот. Давление и плотность пропорциональны друг другу, поскольку температура в нашем случае постоянна. Давление с уменьшением высоты должно возрастать, потому что нижнему слою приходится выдерживать вес всех расположенных сверху атомов.

Исходя из основного уравнения молекулярно-кинетической теории: P = nkT, заменим P и P0 в барометрической формуле (2.4.1) на n и n0 и получим распределение Больцмана для молярной массы газа:

Так как а , то (2.5.1) можно представить в виде

На рисунке 2.11 показана зависимость концентрации различных газов от высоты. Видно, что число более тяжелых молекул с высотой убывает быстрее, чем легких.

Больцман доказал, что соотношение (2.5.3) справедливо не только в потенциальном поле сил гравитации, но и в любом потенциальном поле, для совокупности любых одинаковых частиц, находящихся в состоянии хаотического теплового движения.

ens.tpu.ru

Закон больцмана для распределения частиц во внешнем потенциальном поле

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

БОЛЬЦМАН (Boltzmann) Людвиг (1844-1906), австрийский физик, один из основателей статистической физики и физической кинетики, иностранный член-корреспондент Петербургской АН (1899). Вывел функцию распределения, названную его именем, и основное кинетическое уравнение газов. Дал (1872) статистическое обоснование второго начала термодинамики. Вывел один из законов теплового излучения (закон Стефана — Больцмана).

Из-за хаотического движения изменения в положении каждой частицы (молекулы, атома и т.д.) физической системы (макроскопического тела) носят характер случайного процесса. Поэтому можно говорить о вероятности обнаружить частицу в той или иной области пространства.

Из кинематики известно, что положение частицы в пространстве характеризуется ее радиусом-вектором или координатами.

Рассмотрим вероятность dW( ) обнаружить частицу в области пространства определяемой малым интервалом значений радиуса-вектора , если физическая система находится в состоянии термодинамического равновесия.

Векторный интервал будем измерять объемом dV=dxdydz.

Плотность вероятности (функция вероятности распределения значений радиуса-вектора )

.

Частица в данный момент времени реально где-то находится в указанном пространстве, значит должно выполняться условие нормировки:

.

Найдем функцию вероятности распределения частиц f( ) классического идеального газа. Газ занимает весь объем V и находится в состоянии термодинамического равновесия с температурой Т.

При отсутствии внешнего силового поля все положения каждой частицы равновероятны, т.е. газ занимает весь объем с одинаковой плотностью. Поэтому f( ) = c onst.

Используя условие нормировки найдем, что

,

Если число частиц газа N, то концентрация n = N/V .

Следовательно, f(r ) =n/N .

Вывод : в отсутствие внешнего силового поля вероятность dW( ) обнаружить частицу идеального газа в объеме dV не зависит от положения этого объема в пространстве, т.е. .

Поместим идеальный газ во внешнее силовое поле.

В результате пространственного перераспределения частиц газа плотность вероятности f( ) ¹ c onst.

Концентрация частиц газа n и давление его Р будут различными, т.е. в пределе где D N – среднее число частиц в объеме D V и давление в пределе , где D F- абсолютное значение средней силы, действующей нормально на площадку D S.

Если силы внешнего поля являются потенциальными и действуют в одном направлении (например, сила тяжести Земли направлена вдоль оси z), то силы давления, действующие на верхнее dS2 и нижнее dS1 основания объема dV, не будут равны друг другу (рис. 2.2).

В этом случае разность сил давления dF на основания dS1 и dS2 должна быть скомпенсирована действием сил внешнего поля .

Суммарная разность сил давления dF = nGdV,

где G – сила, действующая на одну частицу со стороны внешнего поля.

Разность сил давления (по определению давления) dF = dPdxdy. Следовательно, dP = nGdz.

Из механики известно, что потенциальная энергия частицы во внешнем силовом поле связана с силой этого поля соотношением .

Тогда разность давлений на верхнее и нижнее основания выделенного объема dP = – n dWp.

В состоянии термодинамического равновесия физической системы ее температура Т в пределах объема dV везде одинакова. Поэтому используем уравнение состояния идеального газа для давления dP = kTdn.

Решив совместно последние два равенства получим, что

– ndWp = kTdn или .

После преобразований найдем, что

,

где ℓ n no – постоянная интегрирования (no – концентрации частиц в том месте пространства, где Wp=0).

После потенцирования, получим

.

Вывод: в состоянии термодинамического равновесия концентрация (плотность) частиц идеального газа, находящегося во внешнем силовом поле, изменяется по закону, определяемому формулой (2.11), которую называют распределением Больцмана.

С учетом (2.11) функция вероятности распределения молекул в поле силы тяжести принимает вид

.

Вероятность обнаружить частицу идеального газа в объеме dV, расположенного у точки, определяемой радиусом-вектором , представим в виде

.

Для идеального газа давление отличается от концентрации только постоянным множителем kT (P=nkT).

Следовательно, для таких газов давление

,

Применим распределение Больцмана к атмосферному воздуху, находящему в поле тяготения Земли.

В состав атмосферы Земли входят газы: азот – 78,1 %; кислород – 21 %; аргон-0,9 %. Масса атмосферы -5,15 × 10 18 кг. На высоте 20-25 км – слой озона.

Вблизи земной поверхности потенциальная энергия частиц воздуха на высоте h Wp= mogh , где m o – масса частицы.

Потенциальная энергия на уровне Земли (h=0) равна нулю (Wp=0).

Если в состоянии термодинамического равновесия частицы земной атмосферы имеют температуру Т, то изменение давления атмосферного воздуха с высотой происходит по закону

.

Формула (2.15) называется барометрической формулой; применима для разреженных смесей газов.

Заключение : для земной атмосферы чем тяжелее газ, тем быстрее падает его давление в зависимости от высоты, т.е. по мере увеличения высоты атмосфера должна все более обогащаться легкими газами. Из-за изменения температуры атмосфера не находится в равновесном состоянии. Следовательно, барометрическую формулу можно применять к малым участкам, в пределах которых изменения температуры не происходит. Кроме того, на неравновесность земной атмосферы влияет гравитационное поле Земли, которое не может удержать ее вблизи поверхности планеты. Происходит рассеивание атмосферы и тем быстрее, чем слабее гравитационное поле. Например, земная атмосфера рассеивается достаточно медленно. За время существования Земли (

4-5 млрд. лет) она потеряла малую часть своей атмосферы (в основном легких газов: водорода, гелия и др.).

Гравитационное поле Луны слабее земного, поэтому она практически полностью потеряла свою атмосферу.

Неравновесность земной атмосферы можно доказать следующим образом. Допустим, что атмосфера Земли пришла в состояние термодинамического равновесия и в любой точке ее пространства она имеет постоянную температуру. Применим формулу Больцмана (2.11), в которой роль потенциальной энергии выполняет потенциальная энергия гравитационного поля Земли, т.е.

где g – гравитационная постоянная; Мз – масса Земли; m o – масса частицы воздуха; r – расстояние частицы от центра Земли.

При r ® ¥ Wp=0. Поэтому распределение Больцмана (2.11) принимает вид

,

files.lib.sfu-kras.ru

11.2 Закон распределения молекул идеального газа во внешнем силовом поле

При рассмотрении кинетической теории газов и закона распределения Максвелла предполагалось, что на молекулы газа не действуют никакие силы, за исключением ударов молекул. Поэтому, молекулы равномерно распределяются по всему сосуду. В действительности молекулы любого газа всегда находятся в поле тяготения Земли. Вследствие этого, каждая молекула массой m испытывает действие силы тяжести f =mg.

Выделим горизонтальный элемент объема газа высотой dh и площадью основания S (рис. 11.2). Считаем газ однородным и температуру его постоянной. Число молекул в этом объеме равно произведению его объема dV=Sdh на число молекул в единице объема. Полный вес молекул в выделенном элементе равен

Действие веса dF вызывает давление, равное

минус – т.к. при увеличении dh давление уменьшается. Согласно основному уравнению молекулярно-кинетической теории

Приравнивая правые части (11.2) и (11.3), получаем


или

Интегрируя это выражение в пределах от до h (соответственно концентрация изменяется от до n):


получим

Потенцируя полученное выражение, находим

Показатель степени при exp имеет множитель , который определяет приращение потенциальной энергии молекул газа. Если переместить молекулу с уровня до уровня h, то изменение ее потенциальной энергии будет

Тогда уравнение для концентрации молекул преобразуется к виду

Это уравнение отображает общий закон Больцмана и дает распределение числа частиц в зависимости от их потенциальной энергии. Он применим к любой системе частиц, находящихся в силовом поле, например в электрическом.

physics-lectures.ru

Распределение Больцмана

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Предположим, что газ находится во внешнем потенциальном поле. В таком случае молекула газа массы $m_0\ ,$ движущаяся со скоростью $\overrightarrow\ $имеет энергию $<\varepsilon >_p$, которая выражается формулой:

Вероятность ($dw$) нахождения этой частицы в фазовом объеме $dxdydzdp_xdp_ydp_z$ равно:

Плотности вероятности координат частицы и ее импульсов независимы, следовательно:

Формула (5) дает распределение Максвелла для скоростей молекул. Рассмотрим внимательнее выражение (4), которое приводит к распределению Больцмана. $dw_1\left(x,y,z\right)$ — плотность вероятности нахождения частицы в объеме $dxdydz$ вблизи точки с координатами $\left(x,y,z\right)$. Будем считать, что молекулы газа независимы и в выделенном объеме газа n частиц. Тогда по формуле сложения вероятностей получим:

Коэффициент $A_1$ находится из условия нормировки, которое в имеющемся у нас случае значит, что в выделенном объеме n частиц:

Что такое распределение Больцмана

Распределением Больцмана называют выражение:

Выражение (8) задает пространственное распределение концентрации частиц в зависимости от их потенциальной энергии. Коэффициент $A_1$ не вычисляют, если необходимо знать только распределение концентрации частиц, а не их количество. Допустим, что в точке ($x_0,y_<0,>z_0$) задана концентрация $n_0$=$n_0$ $(x_0,y_<0,>z_0)=\frac<_0dy_0_0>$, потенциальная энергия в той же точке $U_0=U_0\left(x_0,y_<0,>z_0\right).$ Обозначим концентрацию частиц в точке (x,y,z) $n_0\ \left(x,y,z\right).\ $Подставим данные в формулу (8), получим для одной точки:

для второй точки:

Выразим $A_1$ из (9), подставим в (10):

Чаще всего распределение Больцмана используют именно в виде (11). Особенно удобно подобрать нормировку, при которой $U_0\left(x,y,z\right)=0$.

Распределение Больцмана в поле сил тяжести

Распределение Больцмана в поле сил тяжести имеет можно записать в следующем виде:

где $U\left(x,y,z\right)=m_0gz$ — потенциальная энергия молекулы массы $m_0$ в поле тяжести Земли, $g$ — ускорение свободного падения, $z$ — высота. Или для плотности газа распределение (12) запишется как:

Выражение (13) называют барометрической формулой.

При выводе распределения Больцмана никаких ограничений для массы частицы не применялось. Следовательно, оно применимо и для тяжелых частиц. Если масса частицы велика, то показатель экспоненты быстро изменяется с высотой. Таким образом, сама экспонента быстро стремится к нулю. Для того, чтобы тяжелые частицы “не осели на дно”, необходимо, чтобы их потенциальная энергия была малой. Это достигается в том случае, если частицы помещают, например, в плотную жидкость. Потенциальная энергия частицы U(h) на высоте h взвешенная в жидкости:

\[U\left(h\right)=V_0\left(\rho –<\rho >_0\right)gh\ \left(14\right),\]

где $V_0$- объем частиц, $\rho $- плотность частиц, $<\rho >_0$ — плотность жидкости, h — расстояние (высота) от дна сосуда. Следовательно, распределение концентрации частиц взвешенных в жидкости:

Для того, чтобы эффект был заметен, частицы должны быть малы. Визуально этот эффект наблюдают с помощью микроскопа.

Лень читать?

Задай вопрос специалистам и получи
ответ уже через 15 минут!

spravochnick.ru

Средняя длина свободного пробега молекулы равна отношению пути, пройденного молекулой за 1 с, к числу происшедших за это время столкновений: = / =1/(42r 2 n0).

24.Внутренняя энергия идеального газа.

Внутренняя энергия – это сумма энергий молекулярных взаимодействий и энергии теплового движения молекул.

Внутренняя энергия системы зависит только от её состояния и является однозначной функцией состояния.

Внутренняя энергия идеального газа пропорциональна массе газа и его термодинамической температуре.

Работа газа при расширении.

Пусть в цилиндре под поршнем находится газ, занимающий объём V под давлением p. Площадь поршня S. Сила, с которой газ давит на поршень, F=pS. При расширении газа поршень понимается на высоту dh, при этом газ совершает работу A=Fdh=pSdh. Но Sdh=dV – увеличение объёма газа. Следовательно элементарная работа A=pdV. Полную работу A, совершаемую газом при изменении его объёма от V1 до V2 найдём интегрированием

Результат интегрирования зависит от процесса, протекающего в газах.

При изохорном процессе V=const, следовательно, dV=0 и A=0.

При изобарном процессе p=const, тогда

Работа при изобарном расширении газа равна произведению давления газа на увеличение объёма.

При изотермическом процессе T=const. p=(mRT)/(MV).

Количество теплоты.

Энергия, переданная газу путём теплообмена, называется количеством теплоты Q.

При сообщении системе бесконечно малого количества теплоты Q его температура изменится на dT.

26. Теплоёмкостью С системы называют величину, равную отношению сообщенного системе количества теплоты Q к изменению температуры dT системы: C=Q/dT.

Различают удельную теплоёмкость (теплоёмкость 1 кг вещества) c=Q/(mdT) и молярную теплоёмкость (теплоёмкость 1 моль вещества) c=Mc.

При различных процессах, протекающих в термодинамических системах, теплоёмкости будут различны.

studfiles.net

Популярное:

  • Попытка возврата 4 fb2 Конюшевский Владислав Попытка возврата. Тетралогия АННОТАЦИЯ Владислав Конюшевский Книга 1 Попытка возврата Глава 2 Глава 4 Глава 5 Глава 11 Глава 13 Книга 2 Все зависит от нас Глава 9 Глава 10 Глава 12 […]
  • Сборник постановлений пленума верховного суда Сборник постановлений Пленума Верховного Суда Российской Федерации по уголовным делам Описание книги "Сборник постановлений Пленума Верховного Суда Российской Федерации по уголовным делам" Читать фрагмент. Товар добавлен в […]
  • Имеет ли гражданин россии иметь двойное гражданство Может ли гражданин России иметь двойное гражданство? Отвечает юрист Натан Будовниц: — В соответствии со ст.62 Конституции Российской Федерации, гражданин Российской Федерации может иметь гражданство иностранного государства (двойное […]
  • Жалобы начальнику гибдд Как бороться с плохими дорогами Как известно, в стране две беды. С первой нам не разобраться. Что делать со второй бедой? Куда можно жаловаться на плохие дороги гражданам нашей страны и эффективно ли это? Как оформить жалобу, чтобы не […]
  • Образец заявления о признании трудовых отношений Заявление о признании иска Для чего составлять заявление о признании иска? Ведь в случае, если иск обоснованный, суд и так его удовлетворит. А можно потянуть время, нервы. На самом деле, последние действия — не что иное, как […]
  • Разрешение ходатайства в уголовном процессе РАЗРЕШЕНИЕ ХОДАТАЙСТВ УЧАСТНИКОВ СУДЕБНОГО РАЗБИРАТЕЛЬСТВА В УГОЛОВНОМ ПРОЦЕССЕ. Предлагаю Вашему вниманию статью Пальчиковой М.В. "ОСОБЕННОСТИ РАЗРЕШЕНИЯ ХОДАТАЙСТВ УЧАСТНИКОВ СУДЕБНОГО РАЗБИРАТЕЛЬСТВА В УГОЛОВНОМ СУДОПРОИЗВОДСТВЕ" по […]
  • Заявление об административном правонарушении рассматривается Статья 29.7. Порядок рассмотрения дела об административном правонарушении Статья 29.7. Порядок рассмотрения дела об административном правонарушении 1. Анализ правил ч. 1 и 2 ст. 29.7 позволяет сделать ряд важных выводов: 1) они посвящены […]
  • Ст 319 318 ук рф приговоры Ст 319 318 ук рф приговоры П Р И Г О В О Р ИМЕНЕМ РОССИЙСКОЙ ФЕДЕРАЦИИ г. Моздок РСО-Алания 08 февраля 2010 года Судья Моздокского районного суда РСО-Алания Каргинов Э.А., с участием государственного обвинителя - старшего помощника […]